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Introduction

Let H be an algebraic group over the complex numbers with an irreducible linear
representation V as given in one of the following cases.

I. SO,., with the standard representation on C"*1.

II. SL,,, with the action on S*C"*! = symmetric n + 1 x n + 1-matrices
induced from the standard representation on C"*1.

II. SL,,, x SL,,, with the product representation on C"*'®C""! =
n+ 1 x n + 1-matrices.

IV. SL,,,, with the action on A?C?"*? = antisymmetric 2n + 2 X 2n + 2
matrices induced from the standard representation on C>"*2.

V. The group of type E¢ with the standard 27-dimensional representation.

The simply connected form G of H acts via the quotient map G — Halsoon V. We
will study the G-action on the projectivized space P(V) and the induced action on
the polynomial algebra C[V ] given by

@) =flgv), geG, feC[V], veV.

This results in a description of the G-orbits and their closures in P(V) and
a classification of all graded G-invariant ideals in C[V].

The case I is trivial. The cases I, III, IV have been studied in [4b], [CEP] and
[ADF7 respectively. In their method a basis, explicitly chosen case by case, is used
in order to describe the G-module structure and invariant ideals of C[V].
A disadvantage of the method is that a great deal of the work has to be done in
each case again, while the obtained results are of a similar nature. It will appear
that in our approach all five cases can be studied simultaneously. In order to
study the invariant ideals we will follow the line of [CEP]. Several proofs in this
paper do not use the explicit basis and can be used in our method.



182  G.C.M. Ruitenburg

In all five cases G has an open orbit in P(V) and there is an involutive
automorphism § on G and subgroup K = G® such that G/Ng(K) maps
isomorphically onto the open orbit via a G-equivariant map. In Section 2 we
establish that our list is complete with respect to this property. From this we
obtain an injective graded G-equivariant C-algebra homomorphism

o* P vl » D ClG/K]- T

d>0 dz0

1t is a well known fact that as G-modules

ClG/k1z @ v,

pe(G.K)"

where (G, K)" is the set of all finite dimensional spherical irreducible representa-
tions of G with respect to K (an irreducible representation W of G is said to be
spherical for K if dim(W*) = 1). From this we deduce that C[ V'] has as G-module
a unique decomposition as sum of homogeneous spherical irreducible represen-
tations, which is multiplicity free in each degree. At the end of Section 2 we use
results of [CP] in order to describe this decomposition explicitly.

Since the decomposition is multiplicity free in each degree, each graded
G-invariant ideal has to be a subsum of the decomposition. Therefore it is useful
to have information about the G-span of the product of homogeneous irreducible
components in order to describe the graded (prime, primary, radical) ideals and
their arithmetic. In Section 3 we prove that a G-submodule spanned by the
product of homogeneous G-submodules is already spanned by the product of
their K-fixed elements. After that we focus our attention to the algebra of K-fixed
elements C[V]X. Using the morphism ¢* above it turns out that we are interested
in product formulas for the K-fixed elements @, in C[G/K], where

C[G/KI*= D Co,  ®©,eVE non-zero.
RE(GK)

More precisely, for u,ve(G, K)* we can write

O, @, =3 d(u,v, HO,
A

and we are interested in the set of A for which d(y, v, 1) # 0 since these elements
determine the G-span of @, - ®,.

By general theory there is a torus 4 < G — the maximal split torus, see Section
2 - such that the @, are already completely determined by their restriction to
A/AN K o G/K.Thesefunctions restricted to A/A N K are apart from a different
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normalization precisely the multivariable Jacobi polynomials as used in [H] and
some results of that paper are used in the appendix in order to obtain information
about the set of A with d(y, v, 1) # 0. In the appendix parameters m, > 0 come in,
while we need the results only for special values of m,, see table in Section 2.
However we will use explicit expressions for several d(p, v, ) which are only
defined for m, >0 generic and yield zero divided by zero in our cases.
A continuity argument is needed to get the desired results for our parameter
values.

The above mentioned decomposition of C[¥] will be indexed by Young
diagrams, ie. by sequences of integers ¢, > g, > - > g,,, >0, where n =
dim(4) and A the torus mentioned above. If we use the results on products of
K-fixed elements in order to describe products of homogeneous G-submodules
then we get in terms of Young diagrams for all five cases precisely the same
results. This enables us to study the cases simultaneously.

In Section 4 we classify all G-invariant graded (prime, primary, radical) ideals
in C[V7], and describe the symbolic powers of prime ideals, and primary
decompositions and integral closures of arbitrary ideals. We will work in terms of
Young diagrams and it turns out that all problems are combinatorial questions
on these diagrams. Since we need the several combinatorial results on Young
diagrams on many places in Sections 2, 3, and 4 we have gathered most results
in Section 1.

In the last Section we use our results in order to describe P(V) as G-variety. As
full set of closed G-stable subsets we obtain a sequence

X, < cX,E Xns1=P(V).

Each X, is irreducible and we describe a set of generators of the prime ideal that
defines X,. We also show that X, can be obtained from X, as union of all i — 1
dimensional projective planes through i points on X. Consequently the rank
2 cases of II, ITL, IV and V (I is always of rank 1) yields precisely the standard
Severi-varieties, see [LV].

Section 1. Combinatorics of Young diagrams

A Young diagram o is a sequence (64,04,03,...) of non-negative integers w1.th
0,=>0,20;,>...andg; =0 for all i sufficiently large. If o, ¢ 1 = 0 we also write
¢ = (0,,0,,...,0,) and D, denotes the set of all these Young diagrams. A Young.
diagramin D, can be represented in the plane by a set of (at most) nrows of l?oxes,
the i-th row consisting of o; boxes. For instance if 0 = (4,2,1)e D, the picture
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becomes:

[ ]

L

'In order to understand combinatorics of Young diagrams it is helpful to keep this
representation in mind. By transposing the names ‘row’ and ‘column’ we obtain
a duality on the pictures of Young diagrams. So there is a corresponding duality
on Young diagrams; given a Young diagram ¢ = (6,,...,0,), the dual ¢" =
(6f,0%,0%,...,0), where £ = g, is given by ¢’ = max{j > 1|0; > i}.

We consider D, as a subset of Z" and provide Z", thus via restriction D,, with
some structure. With a sequence a = (a,,...,a,)€Z" we associate the support

supp(a) = {ila; #0 i=1,...,n}

and integers

n

Vk(a)=zai k=1,...,n.

i=k

In particular the degree of a is
la| = )’1(0) = Z a;.
i=1

Furthermore we define three partial orders <, < and <, on Z". Let a =
@y,...,a,),b=(by,...,b,)€Z" then

acb ifandonlyif a;<b, foralli=1,...,n,
a<b ifandonlyif y(a<y/(b) foralli=1,...,n,

a<,b ifandonlyif a;<b; and a;.,=bj,y,...,a,=b,

for some je{1,...,n}.

Clearly < extends < and <, extends < as partial order. The partial order <, is
even a total order and is also called the lexicographic order. Note that on D, the
partial order < means inclusion of the corresponding pictures.

Finally we define the set of strips

E,={(e,....e,)€Z"|e;=00re=1 foralli=1,...,n}
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and the subsets of m-strips

E,.={ecE,|el=m} form=1,..n.

Using the usual addition on Z, the strips will be the building blocks of the Young
diagrams.

Let pe D, be a Young diagram. We say that p is stratified by the sequence of
strips e',e?,...,¢’ if Z{_,e¢' is a Young diagram for all j=1,...,¢ and
p =Z{_,e'. Given a Young diagram ceD,, we say that a sequence of strips
e',...,¢’ is related to ¢ if £ = 0, and |e™| =} for all i =1,...,/ for some
permutation =z on {1,...,£}. If p is stratified by a sequence of strips related to ¢
we say that p is stratified by o.

A stratification of a Young diagram p by a sequence of strips e',...,¢’ can be
represented in the plane as follows: We represent p as before and for each
1 < i < ¢ and each jesupp(e') we put the value i in one of the boxes of the jth row
of the picture of p, such that the numbers in each row are strictly increasing and
the numbers in each column are non-decreasing. It turns out that the set of boxes
with numbers <i is precisely the picture corresponding to the Young diagram
Ti_,el. For example, (4,2,1) is stratified by the sequence e' = (1,1,0), ¢* =
(1,0,1), e =(1,1,0), e* = (1,0,0). In a picture

213]4]

I
1
2]

Also (4,2, 1) is stratified by (2,2,2,1)" = (4,3).
Note that each Young diagram o can be stratified by o itself in a standard way:
since

o=0c""=(0y,...,60) = (6Y)" + - +(67)"
and
(@1 + - + ()"

isa Young diagram forall 1 <j<¢ =0, the sequence €' = (;')" safisﬁes. In the
picture of ¢ it means that we put the number i in all boxes of t}?e i-th column.

We are interested in the set of all T€e D, stratified by some given geD,. By
definition the degrees of a sequence of strips related to @ are in one to one
correspondence with the coordinates of ¢ via some permutation 7. We want to
show that it is no restriction to fix the choice of 7.
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LEMMA 1.1. LetoeD,ande, feE, suchthat o + e, o + e + f€D,, and let d be
an integer with |supp(e) N supp(f | < d < |supp(e) U supp(f) |- Define é€E, by
& is the minimal element in E, with respect to the partial order < such that |é| = d
and supp(é) = supp(e) N supp(f), and put f=e+f—écE,.
Theno + é,6+é+f=0+e+ feD,.

Proof. In order to show that ¢ + & is a Young diagram, we have to verify

o;+é& =20, +&, fori=1..,n—1

Only if & = 0 and &,,, = 1 this needs some verification. In that case it follows
from the minimality of & that

i¢supp(e) N supp(f)

but
i + 1esupp(e) nsupp(f).
Hence
c+1z0,+e+fiz0 te tfiii =04, +2,

thus indeed 0, 2 0,,, + 1.

PROPOSITION 1.2. Let 0D, and n a permutation on {1,...,¢ = o, }. The set
of Young diagrams 1 stratified by sequences of stripse®, ..., e’ with |e"®| = a; for
alli=1,...,¢ does not depend on the choice of .

Proof. Let 1 be stratified by a sequence e’,...,e’. Fix an 1 <i < ¢ and put

i-1
p=Y el e=e and f=e"L
i=1

Let d = |f|. By lemma 1.1. t is also stratified by
el,...,el 6 fet?, .. ¢,

where
el =1f1=1e*" 1T =1é€l.

Thus the choice © can be replaced by mo(i i+ 1). Since the transpositions
(i i+ 1)generates the permutation group on {1,...,¢} the proposition follows.

O
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Consequently it is no real restriction if we work with sequences of non decreasing
degree in order to describe all t stratified by some . In that case the following
lemma says that we can even add an assumption on the last strip in the sequence.

LEMMA 13. Let teD, be stratified by a sequence of strips e',....¢" of non
decreasing degree. Suppose T, > T,41 for some 1 < p < n. Then is t also stratified

by a sequence of strips &',...,&° with |&'| = |é'| foralli = 1,...,/ and moreover
5¢
e — 1

c=1

Proof. By induction on #. For ¢ = 1 is the assertion trivial. Now assume the
assertion to be proved up to £/ — 1> 1. If ¢}, = 1 the assertion holds for the
sequence e’ ..., ¢ itself, so assume ¢, = 0. Write p = T{Z! ¢'; this Young diagram
is stratified by the sequencee’,...,e’ . Nowp,=1,>1,,, > p,,,.thusbythe
induction hypothesis we can replace e',...,¢’ ! by a sequence as in the lemma.
We therefore may assume e5™' = 1. Since |e‘| > |e’™!| and &/ = 0, there is
aminimal j withef = lande{™! = 0,and thus p; < p,_, . Define d = (4,.9,....)
by 6; = —1,6,=1and §; =0 for i # j, p. We claim that t is stratified by the
sequencee’,...,e’ "% e’ 7! — §,¢’ + & and satisfies the desired properties. Picturing
the stratification as mentioned before we in fact interchange two boxes of the
last two strips ¢! and e”:

A7 D

p 7

Namely the last box in the pth row that belongs to the (£ — 1)-th strip (the
non-shaded boxes) is interchanged with the last box in the jth row which belongs
to the /th strip (the shaded boxes).

By construction it is only necessary to verify whether p = e+
e/~! — § = p — disa Youngdiagram. Since j, = p, — 1,p;=p;+ landp, = p;
for i+#p,j it is sufficient to check §,> Pper and p; <Py Using the
(in)equalities above, we get p, = p, — l=1,— 1271+ 2Pp+1. fj=p+1
we are ready, while for j#p +1p;=p; + 1< pj-1 = Pj-1. O

We need Proposition 1.2. and Lemma 1.3 in order to prove our main com-
binatorial result:

PROPOSITION 1.4. Let ¢ be a Young diagram. ‘
(@) If p is a Young diagram with p > o then there exists a Young diagram t such
that p 21,7t = ¢ and |t| =|o|. . '
(b) Iftisa Young diagram with |7] = |o|thent > oif and only if T can be stratified
by 0" . . - d ﬁ
Proof. (a) Assume |p| > |o]. Let j be the minimal with p; > pj+y and de ne
p=(PsPys--) YD =P — land p; = p;fori #j. Clearly p < p, and we claim
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that also 5 > ¢. We prove this by contradiction, so suppose that not 5 > ¢. Then
there is a maximal p such that y,(5) < y,(0). Of course p < j and j, < g, thus

~ ~

PL=p2= p Pptlso,<0p 1 <0 S 0y
But then is
- -1
lpl —1=|p|=17,0p Z 7,(0) < Z a; + 1,(0) = 71(0) = |al,

contradicting |p| > |o|. Now we have found a j satisfying p 2 5, |5| = |p| — 1
and j > o, so repeating the constructing sufficiently many time yields the desired
1. (b) First let 7 be stratified by a sequence of strips e’,..., ¢’ related to 0. Write
5, =({)"=(,...,1),i times 1, for i =1,2,..., then §; < 0 for all 6€E, ;. Now
by the definition of stratification we have

M:

e > Z 5Ie‘l =0

i=1

We prove the converse by inductionon ¢ = ¢,. For £/ = 1 © = ¢ is a strip. Now
suppose the assertion to be proved up toZ — 1 > 1. We use transfinite induction
on the 7 with |7| = |o] and t > o (with respect to the order <).If r = ¢ the earlier
on mentioned standard stratification satisfy. Now let T > p adjacent, |1| = |p| =
||, p > o and suppose that p is stratified by o. Fix j maximal with y,(p) < y,(7)
and after thata 1 < i <jmaximal with y,(p) = y,(7). Then p; > 1, > 7; > p;, thus
p; = p; + 2. Therefore we can find i < p < g <j such that

PpZ Pyt 2,p,>ppey and p,<p,_;.
Hence, if we define
5=1(0,,0,,-..)
with
6,=—16,=1 and 6,=0 fori#p,q,
then p + § is again a Young diagram and |p + 6| = |o|. By construction also
p<p+d<t, thus 1=p+ 6 by the adjacency. By assumption p can be

stratified by o. Then by Proposition 1.2. and Lemma 1.3. we may assume that
p can be stratified by a sequence of strips e',..., ¢’ related to ¢ of non-decreasing
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degree and e, = 1. With help of this stratification we will find a desired

stratification for 7. We distinguish three cases corresponding to the following
three pictures:

|, !
P p J i

N
L

In the first case we assume e = 0. Then &’ + § is a strip with |¢/ + | = |€’| so
el,...,e Y, ¢ + § is a desired stratification of .

In the other cases we suppose ¢ = 1.

If for all p<i<q holds ¢/ =1, then n = X!{Z}e and 5 + 6 are Young
diagrams, n < n + é and n is stratified by e',...,e’”!. Thus by the induc-
tion hypothesis n + & can be stratified by a sequence of strips &*,...,&‘"!
with || = |é|,i=1,...,/ — 1. Since T = p + 6 = 1 + & + € it follows that
&l,...,8 71 € is a desired stratification of .

The third case that remains is €5, = e; =1 and ¢ = 0 for some p <i <g,
suppose i to be maximal with this property. Write n = Z}Z{e’, n is stratified by
e',...,e’1. We have , = 1, and

pq+2=pp>pp+1>pi>p4’1>pq=’1+1’

thus #;=n, + 2, furthermore #;,=71,>7,,;,—1=mn,, and n,<7,_;—
1 < 7,_,. From these inequalities follows that if we define 6' = (41, 63,...) with
8! =—1,85=1and 6} =0 for j #i,q then n + 6 is a Young diagram with
|n + 8| = |n| and 5 + 8! > n. By the induction hypothesis follows that # + &*
can be stratified by a sequence of strips &!,...,&°"! with |&'| = |é’| for
i=1,..., — 1.Now define §2 = (61, 83,...) by 62 = ~ 1,87 = 1 and 6} = Ofor
j # p,i, so 8 + 8% = 4. By construction is ¢ + 62 a strip and |e’ + 62| = |¢’|.
Since

t=04+0=n+e+6'+862=(+38")+ (e + 6%

it follows that &*,...,&/7 %, ¢’ + 6 is a desired stratification for t. O

From part (b) of the proposition follows that given a sequence of strips et,....¢ef
related to o such that p + £/, ¢'isa Youngdiagramforall j = 1,...,# and some
Young diagram p, thent = p + £{_, ¢' > p + 0. Part (b) says that in the special
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case where p is the zero diagram the converse holds too. Unfortunately in general
ift2p,|7|=1|p + 0| and 7 = p + o there needs not exist such a stratification.
A counter example is already given by 7 = (2,2,2), p=(2,1) and o = (1,1,1).
However in the following special case, where it is essential that we work inside
a set of Young diagrams D, with n fixed, there is:

PROPOSITION 1.5. Fixn>OandletceD,,/ = o,. There existsam > 0 such
that for all pe D, with |p| = |(m + 1)a| holds: p = (m + 1)o if and only if there is
a sequence of strips e',...,e™ related to mo such that o + £i-,e' is a Young
diagram for allj=1,...,m*¢ and p = 0 + 1% €.

~ Proof. First suppose we have already a m > 0 that satisfies, then m + 1, and
hence all m’ > m, satisfies. Namely, assume 5 > (m + 2)o for some geD,. From
Proposition 1.4 follows that p can be stratified by a sequence of strips

gl,... g+

related to (m + 2)o and by Proposition 1.2 we may assume that

él’__ .,é(m-(-l)l

is related to (m + 1)o. Put

(m+1)

p= 3 &,

i=1

by Proposition 1.4 again we have p > (m + 1)o. By assumption we may apply the
proposition, so there is a sequence e’,...,e™“ as stated in the proposition. Now
it is obvious that

el,... eml Em L pmt )

is a desired sequence for .

We now prove by induction on ¢ = ¢, that the proposition holds if we take
m = n2.

For £ = 0 there is nothing to prove. If £ = 1, then ¢ = (j)* = (1,...,1), j times
1, for some 1<j<n If we take in this special case m = 0 then the only
p satisfying the conditions is p = o, and the assertions become trivial. Thus for
¢ =1 the proposition holds for all m > 0.

Next suppose £ > 1 and the proposition to be proved up to ¢ — 1. Let pe D,
satisfy the conditions. By Propositions 1.4 and 1.2 p can be stratified by

a sequence of strips e’,...,e™* 1 related to (m + 1)¢ and of non-decreasing
degree.
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We claim that we can choose this sequence such that in addition we may
assume e’ = (1,...,1), j times 1, where j = ¢y is the maximal degree in the
sequence, for some (m + 1)(f — 1) < i< (m + 1)Z.

Before we prove this claim, we finish the proof of the proposition. Clearly the
Young diagram

(m+1)(¢—1)

R

j=1

is stratified by the sequence of strips

el,... emtve-D

related to ¢ = (m + 1)(¢ — e'). Since &, = £ — 1 there is by the induction hypo-
thesis a sequence of strips

él,...,emv
related to mé such that
m(Z—1) .
p=6+ Yy &

Jj=1

and each initial sum

is a Young diagram. It follows that
(m+1)¢ .
p=p+ 3y &

j=m+1)-m

and each initial sum of the sequence

1 .“’é-m(l—l), e{m+ l)l-m,. “,e(m+1)f
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is a Young diagram. Now e’ can be found in the last part of the sequence and is
itself a Young diagram. Thus in a picture the stratification looks like

T
where & and e’ are the dotted and shaded area respectively and the blank part
corresponds to the remaining strips.

Because the sum of Young diagrams is again a Young diagram it follows that
each initial sum of the sequence

c=6+e 8, . . emiD gmr)imm el emT1

is a Young diagram. In the picture this can be interpreted as shifting the shaded
strip into the first position:

|

Now ¢ corresponds to the union of the dotted and shaded area and the remaining
set of strips yield the blanks area.

Since the total sum equals p, we have found a desired sequence.
It remains to prove the claim.

In the first instance we only know that the sequence has non-decreasing degree.
We define

a=m+ 1)/ —n*+in fori=0,1,...,n.
Thus

m+/-H<m+1) —m=agy<a, <--<a,=m+1).2.

We first show that the sequence e’,...,e™* ¥/ can be chosen such that in
addition

{1,....5}s U supp(e") foralli=1,...,n. (*)

kelai - 1 +1,ai]
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Here [a,b], a,beZ, denotes {ceZ|a < ¢ < b} and as before j = ¢y. Thus the
picture of such a stratification looks like

11111

)

«

v |

where the shaded area corresponds to e*-'*! + ... + ¢, the dotted area to
e™-2*1 4 .. 4 et etc. Write p' = Zi., e each time we change our choice of
the sequence e, ..., e™* 1 below we suppose that the definition of the p’ change
with it. We need the following fact:

Let 1 <s<t<(m+ 1)/ and suppose

pé.,p+1le |J supp(e)

ke[s+1,1]

forsome 1 < p < n,then p;, > pj+, thus by Lemma 1.3 we may assume e}, = 1 for
an appropriate chosen sequence e',...,e".

We now prove (*) for i = n. Since e® has degree j, there is a j < g < n with
eg = 1. Now fix ¢t = g; and let s run through the row a; — 1,4, — 2,... as long as
there is a maximal p < g (now p depends on s) such that

p¢ |J supp(eh)

kels+1,a;)

and replace the sequence e, ..., e° by an other choice such that e} = 1. Clearly
s stays > a; — (n — 1), thus after the algorithm we get the desired assertion for
i = n. Itis obvious that we can repeat this algorithmfori=n—1,n—2,...,1(in
this order!) such that we get ultimately (*).

We now assume that we have chosen a sequence e*,...,e™* " that in addition
satisfies (*). We use Lemma 1.1 in order to alter this sequence into a sequence that
satisfies the claim.

Let i run through the sequence (m + 1)/ — 2,(m + 1)/ — 3,...,(m + 1)¢ — n?
(in this order), and replace e'* !, e * 2 by &' * !, &' * 2 in accordance with Lemma 1.1.,
where ¢ = p',e = e'*!, f=e'*? and d = j. After carrying out the step for i = a,,
p=n—1,n-2,...,0it follows from (*) that

{1,2,..., minimum (j,n — p)} < supp(e** ™).
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Hence {1,...,j} < supp(e) for some i>ag=(m + 1)/ —m, and thus ' =
(,...,1),j times 1, because |¢’| = j. 0O

Section 2. Structure and representation theory

Let G be a semisimple simply connected algebraic group over the complex
numbers with an involutive automorphism 6 and fixed point group K = G°. By
definition the quotient space G/K is a semisimple symmetric space. Among the
tori A with 8(a) = a™ ! for all ae 4 we fix a torus 4 of maximal dimension. This
torus is called a maximal split torus and its dimension the rank of the symmetric
space G/K. There always exists a maximal torus T such that 4 < T and T is
f-stable. We fix one such T. Let g be the Lie algebra of G, A" the character set
of A and 1eA". Put

g; = {Xeg|Ad(@)X = a*’X VaeA},
m; = dim¢(g;),
R(g,a) ={aeA"|a#0 and m, >0}

Furthermore let Ni(A4) and Cy(A4) be the normalizer and centralizer of 4 in
K respectively. Put

W = Ng(4)/Cx(4).

The set R(g, a) is named the restricted rootsystem. It is a possibly non-reduced
rootsystem with Weyl group W. The restricted rootsystem is called the type of the
symmetric space G/K. If it is irreducible then we say G/K is irreducible. Let E be
the real vectorspace spanned by R (g, a). We define

P={leE|(4a")eZ VoaeR(g a)},
P, ={ieP|(ha")>0 YaeR,(g a)}

where a¥ = 2a/(o, o) and R (g, a) a set of positive roots in R(g, a) such that the
induced order is compatible with the order on all weights. Here (-,*) is
a W-invariant inner product on E. Since by assumption G is simply connected the
character lattice A" of A equals P. For any finite dimensional irreducible
representation ¥ of G holds dim¢ V¥ < 1. If this dimension equals 1 then V is
called a spherical representation, and each non-zero K-fixed vector a spherical
vector. (G, K)" denotes the set of all finite dimensional irreducible representa-
tions. Helgason’s theorem [Hel 2, chap. V] says that there is an one to one
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correspondence
(G K)"—>2-P,.

Given A€ P, then the character 24 on 4 extends in a unique way to a character 27
on T by demanding 21(t) = 1 forall t € T with 6(t) = t. We thus obtain a spherical
irrreducible representation V, of G with the highest weight 2, and this gives the
one to one correspondence mentioned above. Since the C-algebra C[G/K] is as
G-module isomorphic to the direct sum of all spherical representations in (G, K)*
we get

C[G/K]= @ V,.

AP+

Now takea Ae P, A # 0,and a spherical vector v € V;. In the projectivized space
P(V,) holds stabg(v) = N4(K), see [CP, (1.7)], thus the G-orbit of v in P(V,) is
isomorphic to G/N4(K). We are interested in the cases where the closure of the
orbit Gv is the whole projective space P(V,). In that case the map

9:G/K x C*> ¥,
given by
(9K, 1) = tgv

has an open dense image in V,. This induces an injective graded G-module
homomorphism:

o*:C[V,]= D C[V,], o D C[G/KIT? = C[G/K x C*].

az0 deZ

Consequently for any d > 0 C[V,], is a multiplicity free G-module or equiva-
lently C[V,] is a multiplicity free G x C*-module. A complete list for irreducible
G/K with Gv = P(V,) is given in the following table:

G K v, dimV, rank m,
I SO,., 0, crt n+1 1 n—1
u SL..., SO, ., s2gn+t ) n 1
m  SL?,,  SL,,,diag C'T'@C! (n+ 1) n 2
v SL 2042 SPan+2 ACPT2 (n+1)2n+1) n 4
v Eq F, (C3®C3)? 27 2 8
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Strictly speaking we have, in accordance with the assumptions, to replace the
pairs G, K by their simply connected forms. Note that all cases are of type 4,
where n is the rank. Let the Dynkin diagram be

where a,,...,q, are the simple roots of R(g, a) = A,. The fundamental weights
Ais-..» A, are the duals of the coroots ay , ..., «, and after eventually transposing
the Dynkin diagram we may assume that A = 4,,.

The table can be obtained as follows: In [ Ka, Theorem 3] Kac gives a complete
list of multiplicity-free irreducible linear actions of connected reductive algebraic
groups, i.e. irreducible linear representations such that C[V] decomposes
multiplicity free. By the above mentioned facts our cases must be contained in this
list. A case by case verification using the classification of irreducible symmetric
spaces in [Hel 3] yields the table. This table is also obtained by Heckman
[personal comm.], who determined all cases where the closure Gv in P(V) has the
Betti-numbers of a projective space.

For the rest of this paper we will restrict ourselves to the cases of the table.

We want to describe C[V,] as G-module. We already know that ¢* embeds for
any d > 0the homogeneous component C[V;],in C[G/K] = @D ,p. V;. Work of
de Conicini and Procesi gives an explicit decomposition. In fact we also be able to
give our own proof, see remark to Corollary 3.9. As usual we provide P and
P, ={n A, + -+ +n,4,|n; > 0} with the partial order

p<vifandonlyifv—pu= ) ma, n,>0,neZ
i=1

THEOREM 2.1. C[V,], Z @, a1, V..

n
Proof. Let X(d4,) be the closure of the G-orbit of the spherical vector in V;; .

Denote by L,;, the restriction of the trivial line bundel ¢(1) on P(V,,) to X(d4,).
The composition of the G-equivariant map

d
Vis Ve,

v @ Qv
and the projection
VitV

on the Cartan component induces a natural isomorphism X(4,) —» X(d4,) and
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through this isomorphism the line bundle X(d4,) corresponds to the linebundle
L$on X(A 1)- Since C[V,], can be interpreted as the sections in the linebundle

01)® on P(V,) we have
CLV,14 = HYP(V,), O(1)®).

Because in our special case X(1,) = P(V,), we get
HP(V), 0(1)®) = HOX(2,), L}

and using the isomorphism above
HX(A,), LE%) = HY(X(d4,), Las,)-

The theorem in [CP, Section 8] says

HO(X(dA)), L) = €D V. O

p<diy

The disjoint union U, o{pe P, | p < dA,} figures as index set for the decomposi-
tion of C[V,] as G-module. Later on we will study the multiplicative structure
and then it is for combinatorial reasons easier to work with Young diagrams. In
order to attach to each pair (g, d) with u < dA, a Young diagram, we need the
following.

LEMMA 22. Let £}. a;A;€ P, and d = 0, then

a;A; < dA; if and only i
Aj < dA d only if

i=1

n
d= Y a-i+a,, (n+1) for some integer a,,, >0.
i=1

Proof. In order to write the fundamental weights in terms of the fundamental
roots one has to invert the Cartan matrix. For the rootsystem A4, we get, see
[Hul 1, Section 137:

1
ii=n+1((n—i+1)a1+2(n—i+1)a2+---+

+i—=Dn—i+ Doy +iln—i+ Doy +i(n — iy g + -+ doc,)
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From this follows that A; < il; and O < (n + 1)-4,. But then

ald; €Y ail, <) aili +a,.,(n+ DA, = ai+a,. . (n+1))4
it
i=1 = i i

i=1 = i=1

so that “if” part follows. Conversely, if X7~ a;4; < dA,, then the coefficient of ,
of dA, —= Z-,a;4; expressed in terms of the fundamental roots is a,., =
(d — ==, a;*i)/(n + 1). By assumption a, .+, must be a nonnegative integer, thus
d=2Xl_,a;"i+a,,, (n+1)is of the desired form. O

Now we attach to the pair u= X} ;a;4;€ P, and d > 0 with y <dAi, the

Young diagram ¢ = g, = (04, .- ,,H) deﬁned by o; = Z}Zla; wherea,,  is
defined as in the Lemma. Then

n+1 n+1 n+1

lol= 3, zai‘_“zaj'j:d and a; =0, —0;4;.

i=1 j=1 j=1

Conversely let ¢ = (6,,..:,0,,,) be a2 Young diagram. Define d = |¢| and
u=py, =Xi-(0; — ;4 1)4. Now we have

Z —0;4)J + 0, (n+ 1)

= Z z (05— 0j+1) + Onri(n + 1)

i=1 j=1

I
M=

(0; = 0pe1) + 0, (n+ 1)

Now by the Lemma u < d-4,.
We have that D, , is the disjoint union of the subsets

Dn+ld {UEDn+1|]JI d} d=071’29----

We just proved a one to one correspondence between the ue P, with u < di,

and the elements of Dn+1,4. Let V, denote the irreducible summand V,_ in
C[V,,],s then theorem 2.1 translates into

THEOREM 23. C[V,]= @ v,.

o€Dp+y
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Section 3. Multiplicative structure

The first purpose of this section is to relate the multiplicative structure of
irreducible G-submodules of C[V,] and C[G/K] to the multiplicative structure
of the K-fixed elements. For each e P, we choose the elementary spherical
function @, e V¥ normalized by ®,(e) = 1, where e denotes the coset of the unit
element of G. These elementary spherical functions form a C-basis for the set of all
bi-K-invariant functions C[G/K]* on G. So for any u,ve P, we can write

O, @, =3 duv,)0,

AeP+

Also for each geD,,, is the irreducible G-submodule V', of C[V,] spherical,
thus we can choose a spherical vector @, in V,. The morphism
¢*:C[V,] o @ 4.2C[G/K]1T* maps V, isomorphically onto V,_-T" and we
normalize ®, in such a way that it is mapped by ¢*to @, - T'?!. These functions

®_, also called spherical functions, form a C-basis for C[V,]%. As above we can
write for any o,7€D,

O, = Y do,1,p),.

peDyp+1y

We also define a multiplication of the irreducible G-modulesV, and V. in C[V,]
by

V,-V, = G-module in C[V,] spanned by {(fglfeV,geV}

Of course there is for C[G/K] a similar definition.

THEOREM 3.1. V, -V, = @ ,V, where the sum is taken over all pe D, ., with
d(o,7,p) # 0.
Proof. Using the morphism ¢* we get

d(a,7,p) # 0 if and only if |a| + Iz = |p| and d(u,, i, #,) # 0.

It is therefore equivalent to prove

THEOREM 32. V-V, =@,V where the sum is taken over all A with
d(u,v,4) # 0.

Proof. We begin with some general theory.

After extending the Zariski-topology on G/K to the C-topology one can take
a compact real form Go/Ko of it. Define

C®(Go/Ko)<o ™ < L*(Go/Ko)
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the space of all K ,-finite functions f€ C*(G,/K,).ie. K, “f is contained in a finite
dimensional subspace. The unitary trick says that the restriction map gives ar
isomorphism

ri C[G/K] = C(Gy/K Yo,

The advantage of working in C®(G,/K,)**/™ is that the restriction of the
G,-invariant Hermitean innerproduct of the unitary representation L*(G,/K o
provides a Hermitean innerproduct ¢ -,* > on it. The decomposition of C[G/K
carries over to a decomposition in pairwise orthogonal irreducible component:
of C®(Go/K,)**" as G,-module. Write V}, = rV, and @}, = r(®,).

For any irreducible unitary spherical representation W of (G,, K,) witl
innerproduct {-,-> and e, € W a spherical unit vector we now define

£, €C°(Go/K YKo ™, weW, as
fu9) = w,gey ), geGo/K,

and a C-linear G,-equivariant embedding
1 W= C=(Go/Ko)<o o™
we f,,.

For W = V}, an irreducible summand ¢ becomes in fact a map of V7, into itse!
given by multipliction with some scalar a, € C*. Thus fore, = a, '@, andfe V
we get

J(g) = <{f, ge,>g € G.
We are now ready to prove the theorem.

Given p,ve P,, we provide the vectorspace V} ® V7 with a Hermitea
innerproduct ¢*,*> by demanding

@ Wy, vy @ Wy = v, v, )Wy, W) vy, v, €V, w,w,e Vi

Then there is an orthogonal direct sum decomposition

v,eV,= @ w,ew,

=1

where the W are irreducible spherical representations of (G,, K,) and W do nc
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contain any spherical vector. The orthogonal projection on W, will be denoted by
n;,j = 1,...,m. Ineach W;we choose a spherical unit vector e;, then we can write

Given f; e V, and f, € V, we get for any ge G,/K,

(f1-£2)@ = f1(9) f2(9)
= <f1>geu> {frr 92,

= (/1 ® fr,9(e, ®e,)>

M=

a; i ® 1 gej>

j=1

M3

di<nj(f1 ®f2)’gej>- (*)

j=1

Since the products f; -f, span V- V7, this gives that each V' occurringin V7, - V7
must be isomorphic with some W; with a; # 0.
On the other hand if we take f; = e, and f, = e, then (*) becomes

m

(eu'ev)(g) = Z dj<ajejagej> = Z Iajl2<ejgej>'
i=1

i=1

For each j=1,...,m we have an embedding ¢;: W;— C*(G,/Ko)*/™ as
defined above, thus W; = ¢ (W)) = v, for some 4;. Moreover

ejge;y = e;(9) = oz, L (9),

so if a; # 0 then occurs V7, in V- V5.
Reformulating this in terms of spherical functions gives

m
. _ -1 2
D, =a,n, aytla;*@,,

j=1

and V, occurs in V, ® V, if and only if A = ; for some j with a; # 0, thus if and
only if d(u,v,A) # 0. d

We now focus our attention to the spherical functions C[G/K]¥. From general
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theory, see [R], [V1], we know that KAK < G is a dense subset, thus spherical
functions are completely determined by their restrictions to

AJAAK o G/K.

Each K-orbit in G/K that intersects A/A N K, intersects in a W-orbit, where as

before W = N, (4)/Cy(A) is the Weyl group of R(g, a). Thus there is a restriction
isomorphism

r{C[G/K]¥ - C[A/AnK]".
Since AnK = {ae A|a=a"'} we have an isomorphism
Yy:A/JAnK— A
defined by y(a) = a?, and an induced isomorphism
y*: C[A]" - C[4/An K]".
Put
P(J,a) = @44 4x(a*)e C[4]¥ ®,eC[G/K] .
By composing r and y* ' we get an isomorphism
¢:C[G/K]¥ - C[4]" and
¢(®;) = P(4,a).
Apart from a different normalization the polynomials P(4,qa) are the multi-
variable Jacobi polynomials as introduced in [H]. Let T be the real compact form

of the complex torus A provided with the C-topology, and provide C[4]¥ with
a Hermitean innerproduct {-,-) defined by

Loy = Jf(t)?)ft_)é(t)dt f,9eCL4T”

and weight function

o) = ] 11— 2|m

aeR+
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where the m, are the multiplicities defined in Section 2, R, the set of positive roots

in R(g, a) and dt the normalized Haar measure on T. Then the polynomials form
an orthogonal basis.

Let u,ve P, we have

P(p,a) P(v,a) = Y d(u,v,)P(A a).

AeP

Define
Su,v) = {Ae P, |d(u,v,4) # 0} and
Cu)={neP,|wn <p foral weW}.
1t follows from [H, Section 7] that

PROPOSITION 33. S(u,v) S (u+ C(v))n P, O

The results of the same paper are used in the appendix to make a calculation in
order to prove:

PROPOSITION 3.4. Let u,ve P, and u + w(v)e P, for some we W, then
-+ wv) € S(u, v). a

For general u and v these propositions do not give sufficient information in order
to describe S(u, v), however if we take v = 4,i=1,...,n,2 fundamental weight
they do. Since R(g, a) = 4, we know that all fundamental weights are minuscule
(see [Hu, ex. 13.4.13]), ie. C(4;,) = W4 for i=1,...,n. Thus combining the
propositions we get

PROPOSITION 3.5. S(u, &) = {p + w(d) | we W} P,. 0

In order to employ this proposition we study the W-orbits of the fundamental
weights A,,..., 4,

LEMMA 3.6.

s

W{ll,...,l,,}={i (=1, |l <m<n and

ji=1

1<m1 <m, <"‘<mm<n}'
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Proof. Lets,,i=1,...,n, denote the fundamental reflections, thus
S h;=4; for i#],
Sauhi = Aicy — A+ Ay

Clearly the set on the right hand side is closed under the W-action and contains
{Ags...» A}, thus contains W{i,...,4,}. It is also clear that it contains
2:2" — 2 = 2"*! _ 2 elements. When we prove that W{4,,...,4,} contains the
same number of elements we are done.

Fix j, then the stabilizer in W of 4, is generated by the fundamental reflections
Sags- - >Sa;-1>Sazsys -+ > Sa, and thus contains j!(n — j + 1)! elements. Hence W4,
contains (n + 1)/ji(n —j + 1)! = (*%') elements. Since the W-orbits of the
fundamental weights are disjoint we get

Wi, 2} = Z(n;l)=2"“—-2. O

Jj=1

Given pe W{l,,...,4,}, we can write
n
= Z ai';
i=1

with a} e {~1,0,1}. We define
aty; =1 if a#=—1 for j=max{ila!#0},
at., =0 otherwise.

A straightforward calculation gives that the number

n+1

d(p) = Z at-i

is constant on Weyl group orbits and d(W 1)) = d(4;) = j.
We define

e W{ly, ..., > E i1,

n+1 n+1 n+1
a:yH(Zai‘,Za{f,..., Y, aé‘).
i=1  i=2

i=1 i=n+1
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Becauseal = e(u); — &(p);4, i = 1,...,nwecan, given &(u), find back g, thus eis
injective. From the identity

n+l n+1 n+1
el = Y X at=} af+j=dw
i=1 i=j j=1

follows that

uekE, ()

For eachj = 1,..., nthe sets Wi and E, , , ; contains both (*}) elements, thus
for the restriction of ¢ holds e: WA; » E, , ; ; is a bijection.

We are now ready to state the main result about products of irreducible
G-summands in C[V,]. Let §; =(1,...,1)eD,,,,j times L, forj=1,...,n + 1
and thus V; , @ unique irreducible summand of C[V3];.

THEOREM 3.7. Let 6€D,, ,, then

V, oV, =DV,
P

where the sum is taken over all pe D, , with |p| =|o| + j and

pi—0,=00rl forali=1,...,n+ 1.

REMARK. Theassertion isin accordance with a special case of the “Littlewood-
Richardson-rule”, see [M]. In case III of our classification this rule can be used in
order to describe the product of V-V, for o,7€ D, , arbitrary. In virtue of the
many analogies between the cases of our classification we conjecture that the rule
be satisfied for all of them.

Proof of 3.7. In the beginning of the proof of Theorem 3.1 we noted that
d(0,9;,p) # 0if and only if |¢| +j = |p| and d(u,, 4;, 1,) # 0. From proposition
3.5 follows that d(,,4;,4) # 0 if and only if 2 = p, + pe P, for some pe Wi,.
Let pe W4; arbitrary, then

n
B+ =Y (0, — 0y +at)dy

i=1

so u, + pe P, if and only if

n+1 n+1
a,.-a,.+1+a$‘=<a,.+.Zajf>—<a,~+1+ Y ag‘>>0 foralli=1,...,n

j=1 j=i+1
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This sequence of inequalities is also equivalent with ¢ + e(u) is a Young diagram.
Because 4, .., = K, + 4 and

lo + e = lo| + le)| = [o] + d(u) = |o| +J

we find d(s,9;,p) # 0 if and only if pe D, is of the form o + &) for some
pe Wi, Since e: WA; - E, ., ; is bijective the theorem follows. O

The special case j = 1, thus ¥; = C[V,],, plays an important role in the
classification of G-invariant ideals. In this caseis |p| = |6| + 1 and p; — g, =0 or
l1fori=1,...,n+ 1 equivalent with p g o adjacent (i.e.ff p 2t 20thenp=1
or T = o).

COROLLARY 3.8.
ClViliV, = Gj Vp’ -
p#a
adjacent

Using our combinatorial results on Young diagrams we can prove two other
corollaries. Let ge D, ; and write ¢ = 27X a,d,, where the a; are non-negative

integers and as before 6, = (1,..., 1),i times 1.
COROLLARY 3.9.
VivEeVin= @ v,
s

Proof. By Theorem 3.7. V, is summand of the left hand side if and only if
ltl=a 16,1+ +8,:1]0,41] = 0]

and there is a sequence of Young diagrams t,,7,,...,7, =1 where a =
=rila; = o, such that

TisTy = TyaTy — Tgsenes Tg — Tymy
is a sequence of strips with degrees

|51I,"~,|51|a|52|7"'3|5n+1| al times |51|7~--,an+1 timCS |5n+1 |'

By definition this is equivalent with saying that t can be stratified by ¢. Hence
by Proposition 1.4 the corollary follows. O
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REMARK. One can prove that for g, 7 D, ., with|o| = |1],7 > gisequivalent

with . < p, in P . Using this one can translate the corollary to C[G/K]. For
ay,...,a, > 0 the statement becomes:

Q1 4,,.. /% —
A1 Vl:— @ V}.a
A

where the sum is taken over all A€ P, with A < a,4, + -+ + a,4,. This fact and

the embedding ¢* makes it possible to prove Theorems 2.1 and 2.3 in an other
way.

Let 0 = X]X!a;8, be as above.

COROLLARY 3.10. There exists an integer m > 0 such that

. —

@ Vr @ Vt - Vd - @ Vr‘

120,1€Dn+y t2m-g,1€Dp+y t2mag,teDp+y
ftl=la| [t} =m-|a| {tl =m-|a]

Proof. By Corollary 3.9 the left hand side is in fact the sum of all V, with t¢
teD,, ;T = (m+ 1) and |t| = (m + 1)|0|, and the right hand side is

VG.V')’:I: PN V')T"“-

By a likewise reasoning as in Corollary 3.9 using again Theorem 3.7 one
deduces that the right hand side is the sum of all V, with teD,.,, and
T =0 + I, ¢ for some sequence of strips e*,...,e™ related to mo such that
o + Zl_,efis a Young diagram for all j = 1,...,m/. By Proposition 1.5 now
follows that both sides are a sum over the same set of 7’s. O

Section 4. The invariant ideals

In the preceding sections the main work has been in order to classify the graded
G-invariant ideals in C[V,,]. Let I be such an ideal, then I = @,,,1, where
I,=I1nC[V, ], Since C[V, ], has a multiplicity free decomposition as
G-module, it follows that I, is a sum of some V, with 6e D, ,l0] = d. Hence
I =®,.p, V, for some subset D,<D,.,. Let I, denote the graded invariant
ideal generated by V,. First we describe these minimal ideals:

THEOREM 4.1.

I,= @ v,

20
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Proof. By the definition

I,=C[V,1'V,= @ CV,1a'V,= D C[V,1{-V..

dz0 d=0

Now the theorem follows by Corollary 3.8. O

A subset D D, , is called a diagrammatic ideal, shortly d-ideal, if
ceD,teD,,, and ¢ < t implies te D. For each d-ideal D there is a unique
minimal finite subset {t,,...,1,} such that

D={teD,,,|t21; forsomei=1,...,m}
and we will write
D=(t4,...,T,)

It is easy to give a direct proof for this, however it follows already from the
classification theorem below and the fact that C[V, ] is a Noetherian ring.

THEOREM 4.2. I — D, is a bijective map from the set of G-invariant ideals to the
set of d-ideals, it preserves containment and commutes with taking intersections.

Proof. For any subset D < D, ., the ideal generated by all ¥, with te D is
%, .pl.. From Theorem 4.1 follows X ., I, = @, V, where the sum is taken over
all peD,,, that contains some te D, thus the map is bijective. The other
assertions are trivial. O

Because the partial order < extends the partial order =, we have that

A,=@D V. and 4, =P v,

20 1>a

are graded G-invariant ideals forany o€ D, , ;. We can write ¢ = £72{ a,6,, where

the g, are non-negative integers and 6, = (i)” = (1,...,1),i times 1. Put
I;=1; for i=1,...,n+ 1

PROPOSITIONS 4.3. A, = I§*-----I%}.

Proof. By Proposition 1.4a and Corollary 3.9 both sides are generated by the
V. with te {peD,, |p > o and |p| = |o]}. O

Now the invariant ideals are classified by d-ideals we want to describe the
d-ideals corresponding to the invariant prime, primary and radical ideals. We
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first introduce the corresponding notions for the d-ideals and after their
classification and some preparation we prove in Theorem 4.7 below that they
indeed correspond to the usual ones.

Let D be a d-ideal # D, ,. We say that D is

prime if ¢ + 1€ D implies 6D or te D,
primary if o + e D implies 6D or m-7e D for some m,
radical if m*o e D for some m implies o e D.

The radical of any d-ideal D is defined as
\/5 ={oeD,,,|m-aeD for some m}

and is clearly a radical ideal.
THEOREM 44.

(@) The prime d-ideals are (6,),(5,),...,(0,+,) and the empty set.

(b) The radical d-ideals are just the prime d-ideals.

(c) The primary d-ideals with radical (3;) are the d-ideals generated by m-3; for
somem > O together with some elements of the form £%%} a,é,, a, > 0 and not all
zero. i

Proof. (a) and (b). Let D be a prime or radical d-ideal, and ¢ = Z{.,q,6; €
D with a; # 0. Since (Zioqa;)d ; 2 0, a multiple of §; lies in D, so ;€ D. Thus
D must be of the given form. The converse is trivial.

(c). Let D be a primary d-ideal with radical (6;). Of course there is some
minimal m such that m-3;e D. Now let pe D and write p = ¢ + ¢ where
o =ZXI*}a,6,andt = E{Z{a;6;. Since t¢(9;), thus mr ¢ D for any m, it follows that
g€ D. Because p 2 g we see that a set of generators can be chosen of the desired
form.

Conversely let D be a d-ideal generated by elements of the given form. It is clear
that for teD,,, holds kt¢D for all k if and only if we can write 7=
¥izta;6,.Soife + © 2 p,0,7€D, ., for one of the generators p, but kt ¢ D for all
k, it follows that o = p, thus D is primary. O

Let g,7e D, ,, we have the following inclusions:

Voo SV,oV.e @V, (4.5)
pzao+trt
lpl=lol+

The first inclusion holds since g, ., = p, + Y., thus V. is the image of the
Cartan component of V, @ V, — V,_-V_. The second inclusion is a consequence

of Corollary 3.9 if one write 0,7 and ¢ + 7 as sum of §,,...,9,.,.
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Now let f,ge C[V,,] two non-zero elements. Write

f=x 5

eF

with f, e V, non-zero and some unique finite set F < D, . ;.
Similarly write

g=2.9.

eG

Let ¢ € F and 7 € G be the unique minimal elements in these sets with respect to
the lexicographic order <, defined in Section 1.

LEMMA 4.6.

frg= Y h, with heV, and h,, #0.

pzotz

Proof. Because the lexicographic order >, extends the partial order >, it
follows from (4.5) that for any p, € F and p,€ G

Vm'V;ng @ VIJ

p2,p1tp2

Since p; >,0and p, >, we get, using the definition of = ,,p, + p, =,0+ 7
and equality holds only if p, = ¢ and p, = 7. From this follows the first assertion
of the lemma and also that the only contribution of f*g to h, , . comes fromf, - g..
This reduces the proof of the second part to the case f = f, and g = ¢, in order to
prove the second part of the lemma. In other words we have to prove that the
G-equivariant projection p: V,*V, — V. on the Cartan component maps f*g
to a non-zero element. Suppose we have fixed a Borelsubgroup B = T- U of G,
where T is the maximal 6-stable torus of paragraph 2 and U a maximal unipotent
subgroup, so that we can talk about (highest) weight vectors. We fix highest
weight vectors h,eV_,h.eV, and h,,. =p(h,-h)eV,, .. Since V, is an
irreducible representation, there is a non-empty open subset ¢, = U such that for
all ue Oy uf =, h, + terms of lower weight with «, 0. Similarly their is
a0, < U.Thusforue O; n O, # @ we get p(uf-ug) = B, h, ., + (terms of lower
weight) and f, # 0. Then u-p(f-g) = p(uf-ug) # 0, thus p(f-g) # 0. O

THEOREM 4.7. The 1-1 correspondence I «» D, of Theorem 4.2 preserves the
notions prime, primary and radical.

Proof. We first prove that I - D, preserves these notions. It needs easy
commutative algebra to see that the properties prime, primary and radical of an
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ideal I = C[V,,] can be characterized by: for all finite dimensional C-vector-
spaces V, W of C[V, 1 holds (prime)if V-W < IthenV S [or W < I, (primary) if
V-wel then.V €1 or W" < I for some m and (radical) ifV™ < I for some
mthen V < I.Since V,, <V, -V forallg,7e D,,, (4.5)itis obviousthat I — D
preserves the notions. '

Now let D be a d-ideal. We write

L=@®V, ad - & v,

geD deDp+1\D

Suppose D is a prime or radical d-ideal. We have to proveforall f,ge C[V, ] with

fig¢l, that f-g¢ 1, Write f=f, +f, and g =g, + g,, where f,,g, €, and
f2,9,€I%. Then

f9=1191 + 19, + 29, +f19,¢1, ifand onlyiff,-g,¢Ip
So we may assume f,g € I°. By Lemma 4.6.

frg= Y h, h,eV, and h,,  #0

pzott

for some o,7e D, ,,\D. Since o,7¢ D implies ¢ + t¢ D it follows that fg¢lp.
Now suppose D is a primary d-ideal. From the classification of prime

and primary d-ideals follows \/B = (§;) and mé;eD for some m and some
1 <j<n+ 1 By (4.5) holds

Vglj(n+ 1) c @ Vr,
t=m(n+1)9;

and t > m(n + 1); means in particular y;(r) = m*(n + 1) from which follows

t2md;. Thus V;, = \/7;, solp,cslps \/I;. Since I 3 is a prime ideal we get

I\/5=\/T;.

In order to prove that I, is primary, it is sufficient now to show for f¢ I 5 and
ge I, g # 0, that f-g ¢ 1. Given such fand g we get by Lemma 4.6, using the same
definition of ¢ and 7, f-g = Z‘.p;ﬂ”hp withh, eV, and h, .. # 0. Because f¢ I B

and \/B = (6,) it follows that o ¢ \/B namely diagrams not in (J;) are in the
lexicographic order smaller then elements in (J;). Then o + 7 ¢D, thus f-gé¢l.
O

In a Noetherian ring each ideal has a primary decomposition, ie. can be
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written as intersection of primary ideals. We give an algorithm in order to write
each graded G-invariant ideal in C[V;,] as intersection of graded G-invariant
primary ideals. By Theorem 4.2 and 4.7 we can work with d-ideals.

For o,7€ D, we define

ouUtT=(max(,,7;)...,Max(0, 41 T,41 )€ Dpsy-

Clearly U is commutative and associative and for any te D, . ; holds

n+1
=Y a;4;
i=1
n+1 n+1 n+1
=<Zai>51 U(Zai)52U"'U( Z ai)ﬁ,,_,,l, (48)
i=1 i=2 i=n+1

for some a; > 0,4, € Z. Thus each Young diagram can be written as union of so
called rectangular Young diagrams.

It is also straight forward to verify that the following identity for d-ideals holds:

(s s T OV (P15 5 P2) = (LY P1<icm 1 <jss (4.9)

As a special case we get

(P1oTise e s T O (P2, Tys e 5 Tp) = (01 U P25 Tyse s Ty (4.10)

Now let D be any d-ideal. The algorithm in order to obtain the primary
decomposition of D runs as follows.

First choose a finite set of generators for D, and write each generator as a union
of rectangular diagrams as mentioned in (4.8). Next use (4.10) repeatedly in order
to write D as an intersection of d-ideals, all generated by rectangular diagrams
only. By Theorem 4.4.c d-ideals generated by rectangular diagrams are primary,
so we have obtained a primary decomposition.

The intersection of primary ideals that belong to the same prime ideal is again
primary, (4.9) can be used for taking these intersections. Finally we have to
remove the superfluous primary ideals in order to obtain an irredundant primary
decomposition.

For the minimal ideals I,,7€D,,,, we can give an explicit primary de-
composition. Namely in accordance with (4.8) we can write

T=0b,0,Ub0,U--Ub,, 0,1
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where by 2> b, > ---bn+1. Since b;6, € b;6;if b, = b; forsome 1 <i<j<n+ 1,
also

tT=b_06_w--uUb_

myYmy M, mm*

for some subsequence b, >b,, > - >b
gives

PROPOSITION 4.11.

. > 0. Now the algorithm above

m,

It = Ibml'Uml N e (‘\Ibmm.

is an irredundant primary decomposition. The associated prime ideals are
IL,... I, .

In order to give an explicit primary decomposition of the A,,0€ D, , ,, we need
two Lemma’s.

ForoeD,,, put

Jo)={jl1<j<n+10;#0 or (n+1—j)o;—1)>7;.,00)]
LEMMA 4.12. For any 1€ D, holds
t 20 ifand only if y,(r) = y,(6) for all je J(o).

J(0) is a minimal subset of {1,...,n + 1} with this property.

Proof. By definition t > ¢ if and only if y,(t) > y;(0) for all j > 1. Clearly
the j with ¢; = 0 are redundant since for such j y;(¢) = 0. Now let 1<j<n+1
and supposeo; # 0and (n + 1 — j)o; — 1) < y;4+,(0).- If 7; = o;theny (1) > (o)
will be a consequence of y;,,(t) > 7;,,(0), whereas t; < ¢; implies y;, (1) <
(n+1—j)(0; — 1) <y;44(0). So the test of the inequality is superfluous for j if
we test j + 1. Since for j sufficiently large always holds y;(t) > y;(o) it follows that
we can restrict ourselves to J(o).

Now let je J. But

t=(ol,...,l6L,0; = 1,0;41,042, .-, 0,1 1)ED, 4.
Then y,(t) < y;(0) and y,(z) > y,(o) for all i # j, thus J is minimal. O

LEMMA 4.13. D;,, = {o€ D, |7;(0) = m} is a primary d-ideal with radical (4;)
forall1<j<n+1landmm>0.
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Proof. We show that D; , can be generated by elements of the form as desired
in Theorem 4.4c).

m+g;€ D;,, because yma;) = m.

If teD;, then

127 =(T;.. ., TjpTjatr- > Tae ) €Dy and yy(7) = 7;(7),
thus 7€ D, and is clearly of the desired form. O

We now give the primary decomposition of A4, in terms of d-ideals.

PROPOSITON 4.14.

{T’IEDn+1 |T = G} = ﬂ Dj,yj(a)

Jjed(o)

is an irredundant primary decomposition. '
Proof. Combining Lemmas 4.12 and 4.13 yields the decomposition. Since J(c)
is minimal the intersection has to be irredundant |

Let P be a prime-ideal in a Noetherian ring. For fixed m > 0 occurs in each
irredundant primary decomposition of P™ a primary ideal P™ associated to
P (ie. \/}% = P). P™ does not depend on the chosen decomposition and is
called the m-th symbolic power of P.

In C[V,,] the G-invariant prime ideals are I; =I;i=1,...,n+ 1. We
determine a primary decomposition of their powers and describe the symbolic
powers.

PROPOSITION 4.15.

M= ©® v,

t€Djm

and
IT=1" I A A +=om

is an irredundant primary decomposition, where £ = max(l,n + 1 — (n + 1 — j)m).
Proof. By definition A4,,, = I} and in Proposition 4.14 an irredundant

primary decomposition of 4,,, is given in terms of d-ideals:

{teDyiilt2mea;} = () Di,moy:
ieJ(mo ;)
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We determine J(m-g;). Of course J(m-o;) < {1,...,j}, so let 1 <¢ <j. Then
ZeJ(m-g;) if and only if

(m+1—=0)m—1)2y,(mo;)=(j—Im
thus if and only if
{Z2m+1)—@n+1—j)m
So we get
{teD,,,lt2mo;} =D, OD;_y 3, 00Dy 4ipym

In particular the §;-primary component mé;is D; ,,. Now the proposition follows
by translating these facts back to G-invariant ideals. a

Finally we want to describe the integral closures of G-invariant ideals in
C[V,,]. Given a graded G-invariant ideal I, an element fe C[V; ] is said to
be integral dependend on I if it satisfies an equation of the form z +
a,z’"! + --- + a, = 0 with g; e I'. This is equivalent with M+f = M-I for some
finite dimensional C-vectorspace M < C[V, ],see [ZS, appendix 4]. The integral
closure of I is the ideal of all integral dependend elements, and is again a graded
G-invariant ideal.

We first determine the integral closures of minimal ideals.

PROPOSITION 4.16. The integral closure of I, is A,.
Proof. By Corollary 3.10. there is a m > 0 such that for

N= & v
120,1€Dp+1
[tl=lal

M= & v,

t2mo,t€Dn+1
It =lo]

holds
M-N=M-V,.

Because N generates A, and V, generates I, it follows that 4, is integral over I,,.
In order to show that A, equals the integral closure of I, we prove that for any
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teD,,, with not 7 > g, their do not exists a finite dimensional vectorspace
M such that M-V, < M-1I,. Clearly we can restrict ourselves to G-invariant
vectorspaces M. If not t > g, then y,(1) < y,(c) for some 1 <i<n+ 1. Now take
peD,,, such that V, is summand of M with y,(p) minimal. By (4.5) V.. is
a summand of M-V, but for each summand V, of M-I, holds

Y1) = 9:(0) + 7:(0) > ilp) + ¥:(0),
thus V, ., is not a summand of M- /,. O

Via the 1-1 correspondence I « D, we have for d-ideals the notion integral
closure. We describe the integral closures of arbitrary invariant ideals in terms of
d-ideals.

We extend the partial order < on D,,, to Q"' 2D, as follows: let
a=(ay,..., 8,40 =(0b...,b,4,)€Q""" then

n+1 n+1
a<b ifandonlyif y a,< ) b, foralj=1,...,n+ L
i=j

i=j

PROPOSITION 4.17. The integral closure of the d-ideal (o,,...,0,) is

14
{teDn“ltz%al + - +a,0, forsomeaeQa >0 and ) ¢ = l}

i=1

Proof. First note that from Proposition 4.16 follows that for any ¢ in the
integral closure and any 7€ D, , with t > ¢ also t is in the integral closure.

Now let teD,,, with t>a,0, + - +a,0, for some q;€Q,a;>0 and
¥P_.a, = 1. Choose a positive integer m such that ma; is integral for all
i=1,...,p. Thenmt > ma,0, + --- + ma,o, and - ;ma; = m. By (4.5) we get

yme @ v,
pzmt
and
may , - ma m
sz,lmaiai S Va1 chp = I(cn ..... ap)e

Thus by the remark at the beginning of the proof it follows that ¥ is contained in
the integral closure of If;, .. ,,). Using the definition of integral dependence it
follows that V is integral over I, ).

Conversely suppose V, is integral over I, . «p+ Then for m > 0 sufficiently
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large is

.....

vieve! Tigryopy + VT2 AL apy + o+ I,
By (4.5) V, is contained in the right hand side implies p > Z¥. 1bio, + b, tfor
some nf)n-negative integers b,,... ,bpey with ZPX'b, =m and b 11 <m.
In particular since V, < V™ this holds for p =m-z. In this gase put
k=m—b,,, =2 1b,>0, then k>3 bo, or equivalently t3
ZF_(bi/k)o;, where b,/ke Q, b,/k > 0 and TP- b, /k = 1. 0

Section 5. The G-orbits in P(V,)).

In Section 4 the graded G-invariant prime ideals of C[V,, ] have been classified.
We found a chain of prime ideals I, 21, 2---21,,, 2 1,,, = (0), where I,
is generated by the homogeneous polynomials of degree i in M, for
i=12,...,n+ 1. We consider C[V,,] as the homogeneous coordinate ring of
the projective variety P(V;,). The ideal I, equals the maximal homogeneous ideal
and does not play a role. Fori=1,...,n + 1 we define

X; =zerosetof I, in P(V,)).

PROPOSITION 5.1.

@ {X,,-.., X4} is a complete set of G-invariant closed subsets.

(b) X,,X, - X,,..., X, — X, are the G-orbits.

(c) X, is the orbit of the highest weight vector.

(d) X, is the union of all (i — 1)-dimensional projective planes through i points of X |
together with their limit positions.

(e) X,,...,X, are normal varieties with rational singularities.

Proof. Since X, € X, €+ < X,,, form a complete set of G-invariant
irreducible closed subsets and any G-invariant closed subset is a union of them (a)
follows immediately. Because any G-orbit is open in its closure [Kr, 112.2] (b)
follows from (a). The orbit of the highest weight vector is always closed [Kr,
I113.5] and of course G-stable thus, combining (a) and (b), equal to X,.

Now fix a Borel subgroup B = TU with T the maximal 0-fixed torus defined in
Section 2 and U a maximal unipotent subgroup. Choose highest weight vectors
heVy, fori=1,...,n+ 1. Since for any o,1€D,,,V, . corresponds to the
Cartan component of ¥, ® V,, see (4.5), it follows that for any o = =rtlad,; the
U-invariant element h, = h$'«----hi%'} is a highest weight vector in V. We
also get that C[VM]” = C[hy,...,h.+1] is a polynomial algebra and thus
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€LV, 1+ 1) =Clhy, ... k] i=1,...,n+ L. Several geometric properties
hold for the affine varieties Y; corresponding to C[V; 1/I;,, if and only if they
hold for the affine varieties Y;/U corresponding to (C[V,,1/I;+,)". Thisis proved
for normality [V2] or [Kr] and for having rational singularities only [Br]. So
Y,,..., Y, are normal varieties with rational singularities. From this follows
(e). It remains to show (d). This will be proved after the case by case study below of
our classification given in the table of Section 2.
In order to describe generators for the invariant prime ideals we need

PROPOSITION 5.2. I, is generated by one G-fixed homogeneous element of
degreen + 1. Fori=1,...,nis I, generated by the set of all partial derivatives of
a set of generators of I, ,.

Proof. Since I, is generated by V;  and yu; . = 0€ P, the first assertion
follows. Now fix 1 < i < n. The symbolic power I (™, m > 1, can be interpreted as
the set of functions in C[V,,] vanishing to order >m on Y,_,, see [EH]. By
Proposition 4.15 I{?) is generated by V,; and V; , . Given bases f,, ..., f,of V5,
and Z,,...,Z,of C[V,, 1, the partial derivatives (3/0Z,) f, vanish to order > 1 on
Yi-1, thus are all in V.. Clearly for any g € G g(9/0Z,) f, can be written as a linear
combination of the partial derivatives, so they form a set of generators for V;,.
Since V;, generates I; and V;,,, generates I;,, the proposition follows. O

Now we describe the situation case by case for the classification given in
Section 2.

I) 6=80,,,,,K=0,,V, =C""! the standard representation and rank
n=1.
Let Z,,...,Z,,, denote the coordinate functions, then

I =(Z,....21 )1, =21+ + Zrzn+1)~

(Il G =SL,, x SL,,,K =SL,, ¢ diag,V;, = C" @ C"andrankn =m — 1.
V,, can be identified with the set of complex m x m-matrices M,, ,, such that the
G-action becomes (4, BIM = AMB™!,(4,B)e G,M € M, . -LetZ,;,1<i,j<m,
denote the coordinate functions on M,, , and Z the m x m-matrix with i-j entry
Z;;. Clearly det(Z) is a G-invariant homogeneous polynomial of degree m, hence
I,, = (det(Z)). Because the partial derivatives of the k-minors of Z, k > 1, are zero
or (k — 1)-minors it follows by Proposition 5.6 that for i=1,...,mI; is generated

by the i-minors of Z. Consequently the variety Y, (and X;) consists of (the classes)
of rank <i matrices.
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I ¢=8L,.K=80,,V, =S*C"and rank n =m — 1.
V;, can be identified with the set of symmetric complex m x m-matrices
SM,,n S M, ,, such that the G-action becomes A-M = AMA', AeG,

MeSM,, ..LetZ;; = Z ;. 1 < i,j < m, denote the coordinate functions on SM,, ..
and Z the m x m-matrix with i-j entry Z,.

As in case Il we get fori=1,...,m:
I, is generated by the i-minors of Z.

Y; (and X;) consists of the (classes) of rank <i symmetric matrices.

(IV) G=SL ,,meven, K =Sp,,,V; = A?C™ and rank n = (m/2) — 1.

V,, can be identified with the set of anti-symmetric complex m x m-matrices
AM,, . <M, . such that the G-action becomes A-M = AMA', AegG,
MeAM,,,,. Let Z;=-Z,; 1<ij<m, denote the coordinate
functions on AM,, ,, and Z the m x m-matrix with i-j entry Z;;. Since Z is an
antisymmetric matrix we can take its pfaffian Pf(Z), this is a G-invariant
polynomial of degree m and thus I,,,, = (Pf(Z)). In order to obtain generators
for Ima-1 we have to take partial derivatives. Let 1 <i<j<m then
(0/0Z,;)Pf(Z) is precisely the pfaffian of the (m — 2)-minor obtained from Z by
cancelling the i-th and j-th row and column. Repeating this argument yields that
fori=1,...,n+1=m/2:

I, is generated by the pfaffians of the 2i-minors of Z of which the involved
row-set and column-set are equal.

Y; (and X;) consist of the (classes) of rank <2i anti-symmetric matrices.

(V) Goftype Eg, K of type F, V,, the standard 27 dimensional representation
and the rank n = 2.
V,, can be identified with the vectorspace of triples of 3 x 3 matrices (M ;) such
that the G-action leaves the cubic form

det(Z") + det(Z?) + det(Z*) — tr(Z* -Z%-27%) (5.3)
invariant, the Dickson representation, see [D] or [F]. Here Z*denotes the 3 x 3

matrix with i-j entry Z¥, where Z§,1 <i,j,k <3 are the obvious coordinate
functions. Thus I, is generated by the cubic form. In order to obtain the
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generators of I, we have to determine all the partial derivatives of the cubic form.
We claim that I, is generated by the 27 functions:

(@dji(Z!) — 22+ 2%);, (@di(z®) — 23-2'); (@di(Z®) — Z2'Z%); 1<ij<3.
Here adj(A) denotes the adjoint matrix of 4. It is an explicit calculation to obtain
this result:

Using the identity

3
tr(Z*-2%-2% = Z Zilijz'kZl?i

Ljk=1

one obtains that the partial derivative to Zj;,1 <i,j < 3 of the cubic form is
3
ZY;: — Y Z3Zd = (adi(Z") — 22 Z%);,
k=1

where the ‘co-factor’ (Z1),; denotes (—1)'*/ times the minor of Z* obtained by
cancelling the i-th row and j-th column. The other partial derivatives are obtained
in a similar way by permuting the Z*,Z?,Z? in a cyclic way.

We now prove Proposition 5.1(d). Put

T, = union of all (i — 1)-dimensional projective planes through i points of X,
together with their limit positions.

§;={C*xeP(V,)|x=x, +-+x; forsomeC*x,,...,C*x;e X,}.

Clearly S, and T, are G-stable, S; < T; and §; = T;, thus it is sufficient to prove
X, =8,

For case I there is nothing to prove. Using the matrix representations
above the assertion follows for the cases II,IIT and IV from the facts:
(1) X, contains a basis for V, and (2) rank (4 + B) < rank (4) + rank (B) for
matrices A4, B. It remains to prove case V. Since S, is G-stable and §, =2 X,
S, # X, itissufficient to prove S, < X,. For this purpose we use the description
above of the 27 dimensional representation.

Let (4,B,C),(4',B',C')eV,, two triples of 3 x 3-matrices with their equi-
valence class in X;. Thus these triples are zero’s of the 27 functions of I, or
equivalently:

adj(4) = BC, adj(B) = CA, adj(C) = AB ()
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and similarly for (4’, B’,C’). We show that s+(4, B,C) + #(4’,B’,C’) is for any
s,t€ C a zero of the cubic form (5.3), and thus an element of X,.
We will use that for all 3 x 3-matrices M and N holds:

det(sM + tN) = s* det(M) + s*t tr(adj(M)+ N) + st? tr(M -adj(N))
+ 13- det(N).

This identity can be derived from
det(M — tI) = det(M) — tr(adj(M))t + tr(M)t* — 3

by substituting sM - N ~! for M and multiplying with det(N).
Substitute s(4, B, C) + t(A’, B, C’) in the cubic form (5.7), we obtain

det(sA + tA’) + det(sB + tB’) + det(sC + tC’)
— tr((sA + tA")+(sB + tB')(sC + tC")).
This is a homogeneous polynomial of degree 3 in the variables s and 1. We
determine these coefficients:
The coefficient of s is

det(A) + det(B) + det(C) — tr(ABC).

Since I; < I, this coefficient must be zero.
The coefficient of st is

tr(adj(4)- A’) + tr(adj(B)- B’) + tr(adj(C)-C') — tr(4’BC + AB'C + ABC').
Substituting () in this expression gives

tr(BCA') + tr(CAB') + tr(ABC') — tr(A'BC + AB'C + ABC')
Since the trace function is linear and tr(MN) = tr(NM) for all 3 x 3 matrices

M, N, it follows that this coefficient is zero. By symmetry the coefficients of st?
and t3 are also zero. This finishes the proof for case V and of assertion 5.1 (d).

Appendix. Multiplication of multivariable Jacobi polynomials

Let R be an irreducible root system, not necessarily reduced, with Weyl group W.
Fix a base and denote by R, P and P, the positive roots in R, the weight lattice
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of R and the dominant weights of R respectively. Attach to eachae Ram,e R,
such that m,, =m, for all we W, and define m, =0 for ae P\R. Let H be
a complex torus with character lattice equal to the weight lattice P, and with
compact form T. Define a Hermitean inner product on C[H]", the W-invariant
polynomial functions on H, by

(f.9) = J f(Hgs@)dt  f,geCLH]”
T

where the weight function 4 is given by

6y = [T 11—

acR+

and dt the normalized Haar measure on T.

One can write C[H] ~ @,.,C-1;, with x;: H - C* the character given by
%2 h— h*. We recall some facts from [HO] and [H].

C[H]" has a basis of orthogonal polynomials of the form

Pu,h)y= 3 T,y wHeP.

veCl(u)
with
rw=1L.r, w="T( foral weW and
Cp) = {vePlwv<pu forall weW}.
Here the partial order < on P is as usual defined by

A<y ifandonlyif p—AeR,-Z,,.

Our notation is fairly different from that in [HO] and [H]; m, corresponds to 2k,
in [HO]J and our P(y, h) corresponds to ¢(w, i, k, h) in [HO, (3.11) ... (3.14)] and
P(wou, k; h) in [H, (8.2)], where w, denotes the longest element in W.

So given u, ve P, we can write

P(u, h)- P(v,h) = Z d(p, v, 2)- P(A, h).

ASu+yv

We are interested in the coefficients d(u,v,1). Note that these coefficients
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correspond to d(w,u, wo(v + p),wo(v + p + wp)) in [H, (7.10)]. From the
orthogonality relations follows d(u,v,1) = 0 if not wou +v< A< u+v, see
[H, 8.4)]. Write m; = $m, + m,, for a € R, ashort root, m, = ymy if there exists
a feR, indivisible but not a short root and m, = 0 otherwise.

THEOREM. Let u,vand wu + ve P for some we W. Then d(u,v,wu + v) > 0
Sor all m, > 0. In fact d(u,v, wu + v) can be written as product of non-zero factors
(am, + bm, + ¢)*! with a, b, c € Z>o0.

This proposition is an immediate consequence of the two lemmas below. In fact
all we have to do is to work out the following identity proved in [H, (7.10)]:
For m, > 0 generic

c(wow ™ (v + p) cwo(v + p + wp))

dp, v, wu + v) = — , 1
¥ B0 = g0 F )™ (7 + ) + 10) @
where the c-function is defined by
D=co> Y <A 2
a inadeifi;ible
with
¢ (/l) — 2().,av)+‘}ma +maw , r(%(l + m, + mZa)) .
* C(—(4aY) + Im, + my,)
I(= (L") o

FG(—(Aa’) + im, + 1))

and ¢, = ¢,(m,) a nonzero constant, p = %Eaeh myo, 0" = 20/(at, ), and (-,*)
a W-invariant inner product on the real vectorspace spanned by R.
First substitute the product formula (2) in (1), we have

I cWow ™ L (v + p)-c (wo v +p + wa))
aeR + ca(WO(v + p)) .an(w(](w_ l(v + p) + ,Lt))

a indivisible

d(y, v,wu + v) =

Now use ¢, (wd) = ¢,,-1,(4), woR, = R_ and w§ = 1. We get

I oW+ p)e v+ p + wy)
ks CooVHP)e WV + p) + 1)

a indivisible

d(p, v, Wi +v) =
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H c—wa(v + p)_ c—-a(v + p + Wﬂ)
wr, C-a(VHP) v+ p+ wh)

aindivisible
- I c(v+p+wh 0 c_ (v +p)
aeR C‘a(a + p) acwR C—a(v +p+ Wﬂ)
aindivisible aindivisible
Now write

R, =(R,NwR,)U(R,nwR_)and wR, = (R, nwR,)U(R_nwR,),

then the factors in both products corresponding to the e in R, " wR . cancel out,
hence

LEMMA 1.
c_.v+p+w c_ (v +
dp,v,wp+v)= ] _L(.___e___‘ti) O+
aeR , nwR _ c,(v+p) aeR_nwR c,(v+p+ wi)
aindivisible aindivisible

c,(v+p+wnec,(v+p)
= . 4
aeR}:[wR_ c_,(v+p)c,(v+p+wp “)

a indivisible

[l
Now fix e R, nwR_, o indivisible. Then
LEMMA 2.
C_q(v+p+wy) 5
0+ ©
and
(v +p)
—_ (6)
¢, (v + p+wp

can be written as product of non-zero factors (am, + bm, + c)*' witha,b,ceZ,.

In the proof of this lemma we will use the following facts:
—(wp,o¥) = (1, (W 'a)*) < O since w™'aeR_.
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— If 2a €R then $(wy,«") = (wy, (¢/(a, ) = (Wi, (22)" ) € Z.
- (p,a")=am, + bm, for some a, be Z, and a # 0 if « is a short root while
b s 0 if « is not a short root.

To see the last fact, write p = m, p, + m, p, with p, = $Za, sum over all short
and indivisible roots « € R, and p, = 4Za, sum over all not short and indivisible
roots a e R.. Now (a, p) = my (&, p;) + m,(a, p,) and (a, p;) # O if « short and
indivisible, while («, p,) # 0 if « not short and indivisible.

Furthermore we denote (z), = I'(z + x)/T'(2).

The duplication formula of the I'-function gives (2z),, = (2),*(z + %), - 2**.

If we take x = n a positive integer then we have the Pochhammer symbol

@,=z:+ D) C+n—1)=(=1)(—z—n+1),

Proof of Lemma 2. We begin with the substitution of formula (3). We have

Ca(V + p) — 2—(wu,a")_ 1_.(_ (V + p,av» R
v+ p + wp) M=+ p+wua’))

TG(= (v +p+ wio’) + 3m, + my,))
r(%(— (V + P,av) + %ma + mla))

TH=(+p+wpa’)+3m, + 1)
TG(— @+ p,a”)+3m, + 1)

=2"MG(= v + pa”) + My + M2o)) - gunay”

(%(— (v + P av) + %ma + 1))-—}(‘«“.«").

v @)
(—(V + paa ))*(wu.a“)
and in a similar way
c_0v+p+wp P
« =)~ wma)(L o 1 + May)) — 3w, a)-
———_———_——cla(v s, G+ p + wy, o) + 3m, 20)) = 3w
(%((V + P + wi, av) + %m«z + mZa))—-«}(wu.a") (8)

((V + p + W#s av))—(wu,a")

Now distinguish the two cases 2z € R and 2« ¢ R.
If 2« € R then we know that — 4(wy, o) is a positive integer. Then we can
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rewrite (7) into

(v + p) —wpa
e T =R (v p 4+ waY) — dmy — my) + D) sy
c(v+ p + wp) G +p+wpa’) =3 22) T D swua)

(‘%((V + p + wi, av) - %ma _ 1) + 1)—&(“’11,&) (9)
((V + p + Wl‘t’a\/) + 1)—(wu,u") '
Next write out the Pochhammer symbols in (8) and (9) in order to obtain the
desired product formulas. By the third fact mentioned before the proof it is clear
that all coeflicients of m; and m, are non-negative.
Now assume 2u ¢ R. Then m,, = 0, so we can use the duplication formula in
order to rewrite (7) and (8). We get

(Ca(v + P) (—-(V + ps av) + Jima)-(wu,a‘)

- i (10)
v+ p + wu) (= + ™)) o)
c_(v+p+wu =((v‘l—;!) +wi, o) + 3my) ) (11)
c_,(v+p) v+ p+wi o) o)
We can finish the proof as in the first case. O
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